
Lecture 31

Equivalence Theorems, Huygens’
Principle

Electromagnetic equivalence theorems are useful for simplifying solutions to many problems.
Also, they offer physical insight into the behaviour of electromagnetic fields of a Maxwellian
system. They are closely related to Huygens’ principle. One application is their use in
studying the radiation from an aperture antenna or from the output of a lasing cavity. These
theorems are discussed in many textbooks [33,51,55,66,196]. Some authors also call it Love’s
equivalence principles [197] and credit has been given to Schelkunoff as well [187].

You may have heard of another equivalence theorem in special relativity. It was postulated
by Einstein to explain why light ray should bend around a star. The equivalence theorem
in special relativity is very different from those in electromagnetics. One thing they have in
common is that they are all derived by using Gedanken experiment (thought experiment),
involving no math. But in this lecture, we will show, using mathematics, that electromagnetic
equivalence theorems are also derivable albeit with more work.

31.1 Equivalence Theorems or Equivalence Principles

In this lecture, we will consider three equivalence theorems: (1) The inside out case. (2) The
outside in case. (3) The general case. As mentioned above, we will derive these theorems
using thought experiments or Gedanken experiments. As shall be shown later, they can also
be derived mathematically using Green’s theorem.
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31.1.1 Inside-Out Case

Figure 31.1: The inside-out problem where the two cases in (a) and (b) are equivalent.
In (b), equivalence currents are impressed on the surface S so as to produce the same
fields outside in Vo in both cases, cases (a) and (b).

In this case, as shown in Figure 31.1, we let J and M be the time-harmonic radiating sources
inside a surface S radiating into a region V = Vo ∪ Vi. They produce E and H everywhere.
We call these fields and sources Maxwellian since they satisfy Maxwell’s equations. We
can construct an equivalence problem by first constructing an imaginary surface S. In this
equivalence problem, the fields outside S in Vo are the same in both (a) and (b). But in (b),
the fields inside S in Vi are zero. Despite, the fields and sources in (b) are Maxwellian.

Apparently, in case (b) in Figure 31.1, the tangential components of the fields are discon-
tinuous at S. This is not possible for a Maxwellian fields unless surface currents are impressed
on the surface S. We have learned from electromagnetic boundary conditions that electro-
magnetic fields are discontinuous across a current sheet. Then we ask ourselves what surface
currents are needed on surface S so that the boundary conditions (or jump condition) for
field discontinuities are satisfied on S. Clearly, surface currents needed for these field discon-
tinuities. By virtue of the boundary conditions and the jump conditions in electromagnetics,
these surface currents to be impressed on S are

Js = n̂×H, Ms = E× n̂ (31.1.1)

We have learnt from Section 4.3.3 that an electric current sheet in Ampere’s law produced
a jump discontinuity in the magnetic field. By the same token, fictitious magnetic current
is added to Faraday’s law in Section 5.3 for mathematical symmetry. Then by duality, a
magnetic current sheet induces a jump discontinuity in the electric field. Because of the
opposite polarity of the magnetic current M in Faraday’s law compared to the electric current
in Ampere’s law as is shown in Section 5.3, this magnetic current sheet is proportional to
E× n̂ instead of n̂×H.

Consequently, we can convince ourselves that n̂ × H and E × n̂ just outside S in both
cases are the same. Furthermore, we are persuaded that the above is a bona fide solution
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to Maxwell’s equations. This fact can be proved, as shall be shown later on, by a more
mathematical manipulation. The fact that the field is zero in Vi is known as the extinction
theorem.

The fact that these equivalence currents generate zero fields inside S is known as the
extinction theorem. This equivalence theorem can also be proved mathematically, as shall be
shown.

31.1.2 Outside-in Case

Figure 31.2: The outside-in problem where equivalence currents are impressed on the
surface S to produce the same fields inside in both cases.

Similar to before, in Figure 31.2, we find an equivalence problem (b) where the fields inside
S in Vi is the same as in (a), but the fields outside S in Vo in the equivalence problem is zero.
The fields are discontinuous across the surface S, and hence, impressed surface currents are
needed to account for these discontinuities.

Then by the uniqueness theorem,1 the fields Ei, Hi inside V in both cases are the same.
Again, by the extinction theorem, the fields produced by Ei × n̂ and n̂×Hi are zero outside
S.

It is to be noted that for both inside-out and outside-in cases, the field is extinct by the
extinction theorem only in the volume or region that originally contains the sources. This
will be clear when these equivalence problems are derived mathematically.

31.1.3 General Case

From these two cases, we can create a rich variety of equivalence problems. By linear su-
perposition of the inside-out problem, and the outside-in problem, then a third equivalence
problem is shown in Figure 31.3:

1We can add infinitesimal loss to ensure that uniqueness theorem is satisfied in this enclosed volume Vi.
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Figure 31.3: The general case where the fields are non-zero both inside and outside
the surface S. Equivalence currents are needed on the surface S to support the jump
discontinuities in the fields.

31.2 Electric Current on a PEC

Using the equivalence problems in the previous section, we can derive other corollaries of
equivalence theorems. We shall show them next.

First, from reciprocity theorem, it is quite easy to prove that an impressed current on the
PEC cannot radiate. We can start with the inside-out equivalence problem as shown in (b)
of Figure 31.1. Since the fields inside S is zero for the inside-out problem, using a Gedanken
experiment , one can insert an PEC object inside S without disturbing the fields E and H
outside since the field is zero inside S. As the PEC object grows to snugly fit the surface
S, then the electric current Js = n̂ ×H, which is an impressed current source on top of a
PEC, does not radiate by reciprocity. Only one of the two currents is radiating, namely, the
magnetic current Ms = E× n̂ is radiating; and hence, Js in Figure 31.4 can be removed. This
is commensurate with the uniqueness theorem that only the knowledge of E× n̂ is needed to
uniquely determine the fields outside S.

It is to be noted that Js, Ms, E and H form a Maxwellian system before we insert a PEC
object inside the surface S shown in (b) in Figure 31.1.



Equivalence Theorems, Huygens’ Principle 359

Figure 31.4: On a PEC surface, only one of the two currents is needed since an electric
current does not radiate on a PEC surface.

31.3 Magnetic Current on a PMC

Again, from reciprocity, an impressed magnetic current on a PMC cannot radiate. By the
same token, we can perform the Gedanken experiment as before by inserting a PMC object
inside S. It will not alter the fields outside S, as the fields inside S is zero. As the PMC
object grows to snugly fit the surface S, only the electric current Js = n̂ ×H radiates, and
the magnetic current Ms = E × n̂ does not radiate and it can be removed. This is again
commensurate with the uniqueness theorem that only the knowledge of the n̂×H is needed
to uniquely determine the fields outside S.

Figure 31.5: Similarly, on a PMC surface, only an electric current is needed to produce
the field outside the surface S.

31.4 Huygens’ Principle and Green’s Theorem

Huygens’ principle shows how a wave field on a surface determines the wave field outside the
surface S. This concept was expressed by Huygens heuristically in the 1600s [198]. But the
mathematical expression of this idea was due to George Green2 in the 1800s. This concept

2George Green (1793-1841) was self educated and the son of a miller in Nottingham, England [199].
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can be expressed mathematically for both scalar and vector waves. The derivation for the
vector wave case is homomorphic to the scalar wave case. But the algebra in the scalar wave
case is much simpler. Therefore, we shall discuss the scalar wave case first, followed by the
electromagnetic vector wave case.

31.4.1 Scalar Waves Case

Figure 31.6: The geometry for deriving Huygens’ principle for scalar wave equation.

For a ψ(r) that satisfies the scalar wave equation inside V

(∇2 + k2)ψ(r) = 0, (31.4.1)

Notice that V does not contain the source that produces ψ(r) so that the right-hand side
of the above can be set to zero always. The corresponding scalar Green’s function g(r, r′)
satisfies

(∇2 + k2) g(r, r′) = −δ(r− r′). (31.4.2)

Next, we multiply (31.4.1) by g(r, r′) and (31.4.2) by ψ(r). And then, we subtract the two
resultant equations and integrating over a volume V as shown in Figure 31.6. There are two
cases to consider: when r′ is in V , or when r′ is outside V . Thus, we have

if r′ ∈ V , ψ(r′)
if r′ 6∈ V , 0

}
=

�

V

dr [g(r, r′)∇2ψ(r)− ψ(r)∇2g(r, r′)], (31.4.3)

The left-hand side evaluates to different values depending on where r′ is due to the sifting
property of the delta function δ(r−r′). Since g∇2ψ−ψ∇2g = ∇·(g∇ψ−ψ∇g), the right-hand
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side of (31.4.3) can be rewritten using Gauss’ divergence theorem, giving3

if r′ ∈ V , ψ(r′)
if r′ 6∈ V , 0

}
=

�

S

dS n̂ · [g(r, r′)∇ψ(r)− ψ(r)∇g(r, r′)], (31.4.4)

where S is the surface bounding V . The above is the Green’s theorem, or the mathematical
expression that once ψ(r) and n̂ · ∇ψ(r) are known on S, then ψ(r′) away from S could be
found. This is similar to the expression of equivalence principle where n̂ ·∇ψ(r) and ψ(r) are
equivalence sources on the surface S.

The first term on the right-hand side radiates via the Green’s function g(r, r′). Since this
is a monopole field, this source is also called a monolayer or single layer source. The second
term radiates, on the other hand, via the normal derivative of the Green’s function, namely
n̂ · ∇g(r, r′). Since the derivative of a Green’s function yields a dipole field, the second term
corresponds to sources that radiate like dipoles pointing normally to the surface S. These
sources are also called double layer (or dipole layer) sources. These terminologies are prevalent
in acoustics. The above mathematical expression also embodies the extinction theorem that
says if r′ is outside V , the left-hand side evaluates to zero.

It is to be noted that the left-hand side of (31.4.4) is the mathematical expression of the
extinction theorem. It would not have been possible, if the right-hand side of (31.4.1) is not
zero. In other words, we have picked V so that the right-hand side (31.4.1) can be set to zero.
Thus the field is always extinct in the volume or region that contains the source (you may
need to think about this a bit:)).

3The equivalence of the volume integral in (31.4.3) to the surface integral in (31.4.4) is also known as
Green’s theorem [92].
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Figure 31.7: The geometry for deriving Huygens’ principle for scalar wave. The radiation
from the source can be replaced by equivalence sources on the surface S, and the field
outside S can be calculated using (31.4.4). Also, the field is zero inside S from (31.4.4).
This is the extinction theorem.

If the volume V is bounded by S and Sinf as shown in Figure 31.7, then the surface
integral in (31.4.4) should include an integral over Sinf . But when Sinf → ∞, all fields look
like plane wave, and ∇ → −r̂jk on Sinf . Furthermore, g(r− r′) ∼ O(1/r), when r →∞, and
ψ(r) ∼ O(1/r), when r → ∞, if ψ(r) is due to a source of finite extent.4 Then, the integral
over Sinf in (31.4.4) vanishes, and (31.4.4) is valid for the case shown in Figure 31.7 as well
but with the surface integral over surface S only.

Here, the field outside S at r′ is expressible in terms of the field on S. This is similar to
the inside-out equivalence principle we have discussed previously Section 31.1.1, albeit this is
for scalar wave case.

Notice that in deriving (31.4.4), g(r, r′) has only to satisfy (31.4.2) for both r and r′ in V
but no boundary condition has yet been imposed on g(r, r′). Therefore, if we further require
that g(r, r′) = 0 for r ∈ S, then (31.4.4) becomes

ψ(r′) = −
�

S

dS ψ(r) n̂ · ∇g(r, r′), r′ ∈ V. (31.4.5)

On the other hand, if require additionally that g(r, r′) satisfies (31.4.2) with the boundary
condition n̂ · ∇g(r, r′) = 0 for r ∈ S, then (31.4.4) becomes

ψ(r′) =

�

S

dS g(r, r′) n̂ · ∇ψ(r), r′ ∈ V. (31.4.6)

4The symbol “O” means “of the order.”
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Equations (31.4.4), (31.4.5), and (31.4.6) are various forms of Huygens’ principle, or equiv-
alence principle for scalar waves (acoustic waves) depending on the definition of g(r, r′). Equa-
tions (31.4.5) and (31.4.6) stipulate that only ψ(r) or n̂ ·∇ψ(r) need be known on the surface
S in order to determine ψ(r′). The above are analogous to the PEC and PMC equivalence
principle considered previously in Sections 31.2 and 31.3.

31.4.2 Electromagnetic Waves Case

Figure 31.8: Derivation of the Huygens’ principle for the electromagnetic case. One only
needs to know the surface fields on surface S in order to determine the field at r′ inside
V .

The derivation of Huygens’ principle and Green’s theorem for the electromagnetic case is
more complicated than the scalar wave case. But fortunately, this problem is mathematically
homomorphic to the scalar wave case. In dealing with the requisite vector algebra, we have
to remember to cross the t’s and dot the i’s, to carry ourselves carefully through the laborious
and complicated vector algebra! One can always refer back to the scalar-wave case to keep
our bearing straight.

In a source-free homogeneous region, an electromagnetic wave satisfies the vector wave
equation

∇×∇×E(r)− k2 E(r) = 0. (31.4.7)

Again, we pick the volume V so that the right-hand side of the above is zero to simplify
the derivations. The analogue of the scalar Green’s function for the scalar wave equation is
the dyadic Green’s function for the electromagnetic wave case [1,33,200,201]. Moreover, the
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dyadic Green’s function satisfies the equation5

∇×∇×G(r, r′)− k2 G(r, r′) = I δ(r− r′). (31.4.8)

It can be shown by direct back substitution that the dyadic Green’s function in free space
is [201]

G(r, r′) =

(
I +
∇∇
k2

)
g(r− r′) (31.4.9)

The above allows us to derive the vector Green’s theorem [1,33,200].
Then, after post-multiplying (31.4.7) by G(r, r′), pre-multiplying6 (31.4.8) by E(r), sub-

tracting the resultant equations, the terms involving k2E(r) ·G(r, r′) cancel out. We then
integrate the difference over volume V , and using the sifting property of the delta function,
considering two cases as we did for the scalar wave case, we have

if r′ ∈ V , E(r′)
if r′ 6∈ V , 0

}
=

�

V

dV
[
E(r) · ∇ ×∇×G(r, r′)

−∇×∇×E(r) ·G(r, r′)
]
. (31.4.10)

Next, using the vector identity that7

−∇ ·
[
E(r)×∇×G(r, r′) +∇×E(r)×G(r, r′)

]
= E(r) · ∇ ×∇×G(r, r′)−∇×∇×E(r) ·G(r, r′), (31.4.11)

then the integrand of (31.4.10) can be written as a divergence. With the help of Gauss’
divergence theorem, the right-hand side of (31.4.10) can be written as

if r′ ∈ V , E(r′)
if r′ 6∈ V , 0

}
= −

�

S

dS n̂ ·
[
E(r)×∇×G(r, r′) +∇×E(r)×G(r, r′)

]
= −

�

S

dS
[
−E(r)× n̂ · ∇ ×G(r, r′) + iωµ n̂×H(r) ·G(r, r′)

]
. (31.4.12)

Again, the left-hand side of the above is simple and embodies the extinction theorem. It
would not have been that simple if the right-hand side of (31.4.7) has not been made zero
with a proper choice of V . Hence, the field is extinct in the volume that contains the sources.

The above is just the vector analogue of (31.4.4). We have used the cyclic relation of
dot and cross products to rewrite the last expression. Since n̂×E and n̂×H are associated

5A dyad is an outer product between two vectors, and it behaves like a tensor, except that a tensor is more
general than a dyad. A purist will call the above a tensor Green’s function, as the above is not a dyad in its
strictest definition.

6Since we are dealing with dyads which are tensors like matrices, order is very important here.
7This identity can be established by using the identity ∇ · (A×B) = B · ∇×A−A · ∇×B. We will have

to let (31.4.11) act on an aribitrary constant vector to convert the dyad into a vector before applying this
identity. The equality of the volume integral in (31.4.10) to the surface integral in (31.4.12) is also known as
the vector Green’s theorem [33,200]. Earlier form of this theorem was known as Franz formula [202].
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with surface magnetic current Ms and surface electric current Js, respectively, the above
can be thought of having these equivalence surface currents radiating via the dyadic Green’s
function. Again, notice that (31.4.12) is derived via the use of (31.4.8), but no boundary
condition has yet been imposed on G(r, r′) on S even though we have given a closed form
solution for the free-space case. The above is similar to the outside-in equivalence theorem we
have derived in Section 31.1.2 using a Gedanken experiment . Now we have a mathematical
derivation of the same theorem!

Now, if we require the additional boundary condition that n̂ × G(r, r′) = 0 for r ∈ S.
This corresponds to a point source located at r′ radiating via the dyadic Green’s function,
producing a field at r, in the presence of a PEC surface. Then (31.4.12) becomes

E(r′) = −
�

S

dS n̂×E(r) · ∇ ×G(r, r′), r′ ∈ V (31.4.13)

for it could be shown that n̂×H ·G = H · n̂×G implying that the second term in (31.4.12)
is zero. On the other hand, if we require that n̂×∇×G(r, r′) = 0 for r ∈ S, then (31.4.12)
becomes

E(r′) = −iωµ
�

S

dS n̂×H(r) ·G(r, r′), r′ ∈ V (31.4.14)

Equations (31.4.13) and (31.4.14) state that E(r′) is determined if either n̂×E(r) or n̂×H(r) is
specified on S. This is in agreement with the uniqueness theorem. These are the mathematical
expressions of the PEC and PMC equivalence problems we have considered previously in
Sections 31.2 and 31.3.

The dyadic Green’s functions in (31.4.13) and (31.4.14) are for a closed cavity since bound-
ary conditions are imposed on S for them. But the dyadic Green’s function for an unbounded,
homogeneous medium, given in (31.4.10) can be written as

G(r, r′) =
1

k2
[∇×∇× I g(r− r′)− I δ(r− r′)], (31.4.15)

∇×G(r, r′) = ∇× I g(r− r′). (31.4.16)

Then, (31.4.12), for r′ ∈ V and r′ 6= r, becomes

E(r′) = −∇′×
�

S

dS g(r− r′) n̂×E(r) +
1

iωε
∇′×∇′×

�

S

dS g(r− r′) n̂×H(r). (31.4.17)

The above can be applied to the geometry in Figure 31.7 where r′ is enclosed in S and Sinf .
However, the integral over Sinf vanishes by virtue of the radiation condition as for (31.4.4).8

Then, (31.4.17) relates the field outside S at r′ in terms of only the equivalence surface
currents Ms = E× n̂ and Js = n̂×H on S. This is similar to the inside-out problem in the
equivalence theorem (see Section 31.1.1). It is also related to the fact that if the radiation
condition is satisfied, then the field outside of the source region is uniquely satisfied. Hence,
this is also related to the uniqueness theorem.

8It is to be noted that the integral over Sinf does not vanish because the field is vanishingly small, but the
cancellation of the two terms in (31.4.17).
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